
Development of a

Multi-Disciplinary Computing Environment (MDICE)

Gerry Kingsley

John M. Siegel, Jr.
Vincent J. Harrand

Charles Lawrence*

Joel J. Luker**

CFD Research Corporation, Huntsville, AL

[gmkjms,vjh]@cfdrc.com (205) 726-4800

*NASA Lewis Research Center, Cleveland, OH

Charles.Lawrence@lerc.nasa.gov (216) 433-6048

**AFRL/VAAC, Wright Patterson Air Force Base, Dayton OH

lukerjj@fim.wpafb.af.mil (937) 255-4522

ABSTRACT

The growing need for and importance of multi-component and multi-disciplin-

ary engineering analysis has been understood for many years. For many appli-

cations, loose (or semi-implicit) coupling is optimal, and allows the use of

various legacy codes without requiring major modifications. For this purpose,

CFDRC and NASA LeRC have developed a computational environment to

enable coupling between various flow analysis codes at several levels of fidel-

ity. This has been referred to as the Visual Computing Environment (VCE),

and is being successfully applied to the analysis of several aircraft engine com-

ponents.

Recently, CFDRC and AFRL/VAAC (WL) have extended the framework and

scope of VCE to enable complex multi-disciplinary simulations. The chosen

initial focus is on aeroelastic aircraft applications. The developed software is

referred to as MDICE-AE, an extensible system suitable for integration of sev-

eral engineering analysis disciplines. This paper describes the methodology,

basic architecture, chosen software technologies, salient library modules, and

the current status of and plans for MDICE. A fluid-structure interaction appli-

cation is described in a separate companion paper.

1 Introduction

The Visual Computing Environment (VCE) [1] has enabled the analysis of aircraft engine compo-

nents in support of the Numerical Propulsion System Simulation (NPSS) project involving several

organizations (e.g. NASA LeRC, AlliedSignal, Pratt & Whitney, CFDRC). VCE has enabled

engineers to perform these analyses by coupling several CFD codes (e.g. ADPAC, NPARC,

CORSAIR, NASTAR, NISTAR, CFD-ACE, etc.) into one large CFD simulation.

VCE has also enabled the development of MDICE, a multi-disciplinary version of VCE, which

initially places significant emphasis on structural analysis (e.g. modal and finite element meth-

ods), and its interaction with advanced (3D) flow simulations and geometry modeling / grid gen-

eration. Critical issues include moving geometries and conservative and consistent interpolation

of forces, moments, and virtual work along fluid-structure interfaces.

In order to provide state-of-the-art technologies and to furnish support of the highest quality to

both (propulsion and aircraft) communities, the overall system will be referred to as MDICE.

This paper describes the MDICE software system. Some background information is presented in

section 2. The MDICE methodology is discussed in section 3. Architectural issues are described

in section 4. Current status is discussed in section 5, and some concluding remarks are made in
section 6.

2 Background

A major obstacle in the analysis of engineering systems has been the lack of integration among

the various software modules involved in a multi-disciplinary analysis. Simulations of engineer-

ing systems in the past involved many independent computer programs, run manually in a sequen-

tial (i.e. one at a time) fashion. For example, an engineer wishing to perform a CFD analysis

would often interact with a CAD package to define the geometry, a grid generator to obtain the

mesh, a pre-processor to apply boundary conditions and to set up an input file, a flow solver to

actually perform the analysis, and a visualization tool to examine the results.

The existence of many different file formats exacerbates the problem. An engineer wishing to use

tools that do not share a common file format is often required to write a personal file format con-

vener. Moreover, use of binary data files often means that performing parts of the simulation on

different kinds of computers is difficult or impossible. Using a workstation with good graphics

abilities for the CAD or visualization portion and a dissimilar computationally powerful machine

such a vector super-computer or a massively parallel machine for the fluid flow or structural anal-

ysis requires a great deal of skill, training, and experience on the part of the engineer.

The goal of MDICE is to aid the engineer in solving these problems by providing a distributed

object-oriented system that achieves a high degree of interoperability between the essential analy-

sis tools in a user-friendly environment. MDICE provides an environment where application pro-

grams create and manipulate a common set of objects selected from a rich library of general and

specialized objects, and makes a series of functions available that the engineer utilizes to run the
simulation.

3 Approach

The MDICE software system enables engineers to carry out multi-disciplinary simulations con-

sisting of a set of interoperating computer programs. Code integration is obtained via dynamic

sharing of data, execution control and synchronization. Furthermore, multi-disciplinary interfac-

ing technology plays an important role within MDICE.

The MDICE approach is to provide a computing environment consisting of many computer pro-

grams operating concurrently and cooperatively to solve a set of problems. Execution of each

2

computerprogramis controlledby theengineervia theMDICE graphicaluserinterface. Once
running,theseprogramscommunicatewith eachotherandwith MDICE via asetof standard
functioncalls. As with executioncontrol,managementof thecommunicationoccurringamong
the applicationprogramsis fully controlledby theuser.

Integrationof aparticularcomputerprograminto theenvironmentis accomplishedby makingthe
applicationMDICE compliantratherthanhardwiringthecodeto communicatewith asmallsetof
otherpredeterminedprograms.Oncesointegrated,theMDICE compliantprogramis ableto run
underthecontrolof MDICE andcommunicatewith anyotherMDICE compliantapplication.

Therearemanyadvantagesto theMDICE approach.Usingthis environmentonecanavoidgiant
monolithic codesthatattemptto provideall theneededservicesin asinglelargecomputerpro-
gram. Suchlargeprogramsaredifficult to developandmaintainandby their very naturecannot
containup to datetechnology.TheMDICE methodallows(andevenreliesupon)thereuseof
existing,trustedcodesthathavethemselvesalreadybeenvalidated.Theflexibility of exchanging
oneapplicationprogramfor anotherenableseachengineerto selectandapply thetechnology
bestsuitedto thetaskat hand. Efficiencyis achievedby utilizing aparalleldistributedheteroge-
neouscomputingenvironment.Extensibility is providedby allowingadditionaldisciplinesto be
addedwithout modifyingor breakingthedisciplinesalreadyin theenvironment.

4 Architecture

Major features of MDICE include the ability to synchronize application programs, manipulate

objects, handle events, carry out remote procedure calls, and a execute a script written in an

MDICE script language. MDICE also provides for parallel execution of participating application

programs and has a full Fortran interface for those codes written in Fortran 77 or in Fortran 90 (of

course, C and C++ are supported as well).

MDICE is broken down into several major components. The first, M'DICE proper, is a central

controlling process that provides the features described above. Users interact with this central

process via a graphical user interface. The second is a library of functions that application pro-

grams use to communicate with each other and with MDICE. The environment also encompasses

a comprehensive set of MDICE compliant application programs.

4.1 Application Control

The MDICE Graphical User Interface includes facilities for the control of application programs, a

drawing area where a visual representation of the simulation is rendered, an object clipboard

where information about the various objects created and manipulated by the application programs

is displayed, a script editor that allows the engineer to dictate how the simulation should be run,

and a status window displaying informational messages.

The graphical user interface is used by engineers to set up a simulation. Application programs are

selected; for each, the computer on which the program is to be run is chosen. Other information is

provided, such as specifying a directory to run the program in and any command line arguments

the program might require. The control panel used to set up and control a simulation is shown in

figure 1.

FEMSTRES$

XMGR
IMIAGEMAGIC

ADPAC

GEOM

FASI"RAH

GR00 POST

NPARC

/h o sm'am&ar/proJ/lib s/vc e

SVCE_BIH_PR EF Df,-'bin/SGI_FD-VIEW-V -IR D<- O- U

lqu &_r,"projlllb _e+Ibln/SGI/CF D-VIEW-V-IRD(-O -U

Figure 1. Application Con_ol Panel

Once the simulation has been set up, it is run and controlled using MDICE. The script panel used

to achieve this control is shown in figure 2. The script used by MDICE contains all the conve-

niences found in most common script languages. In addition, the MDICE script supports remote

procedure calls and parallel execution of the application programs being used for a given simula-

tion. These remote procedure calls are the mechanism by which MDICE controls the execution

and synchronization of the participating applications. Each application posts a set of available

functions and subroutines. These functions are invoked from the MDICE script, but are executed

by the application program who posted the function.

4.2 Objects

MDICE supports objects at several levels. On the lowest level, objects are simply named collec-

tions of scalar data, arrays, and other objects. These objects are called data objects, array objects,

and general objects, respectively. An application program can create an object using one of the

creation functions provided by MDICE. An integer handle to the object is returned by the cre-

ation function. These handles are used in all subsequent operations on the object.

• domaJn2onel :GRID_POST

• domain -7one2 :GRID_POST

• domain 20 ne3:GRID_POST

• d omldn :zo ne4:GRID_POST

• d ornaJn:za neO :GRID_POS T
• domMn:zoneS:GRID_POST

il [m I_ HiiW_UlZ'_ HI Pi MI_
• Inff:l O0:ADPACI

!, inff:100;ADPAC2

inff:200:ADPAC3

intf'.2(X) ".ADPAC2
intl":400 ".ADPAC3

VlEW:I
void send {int. rid, Int}

void reev (int. tid, Int. Int. int)
vold alter.grid_setup (_nt_

void solve (int)

void wrapup 0

vold create_dornaln_obJects Ont. strlngl

void create_residual_object lint)

void ©rears_Interface_objects 0
void vce sdata._¢reat, Lpt men (object.

Int vce_lnff_assemble 0

void vce_ptdate_ehange graphs (obje¢

,Itmodules: GRID POST VIEW ADPACI ADPAC2 ADPAC3

#launch GRID_POST. load file new2¢2.PFG and post dl grtds

string v__names_- {'rho','u'}

run all

GRID_POST-" read_and_posLsgrid("new2c2.PFG", 1}

transfer !sgrld 'Tone1 _from GRID POST to ADPAC :1
transfer !sgdd'7one2!. !sgdd.'zone4_ lsgrld:zoneS! from GRID POSTto ADPAC2
transfer !sgrld :zone3!. !sgrtd_one6_. fsgridz, one7! from GRID-POST to ADPAC 3

kill GRID_POST

ADPAC _ - >lhe r..grld_satup(2)

Module GRID POST:I has been halted

done with aAer grid setup0
done with create_domaJnebjectsO
done with ¢reate_interllce_objsctsO

Figure 2. Object Repository and Script Editor

Each object is completely self describing. It may be assigned a group name, user name, and

application name at creation time. In the case of data and array objects, a data type is assigned,

and for array objects the length of the array is specified. Using these features, applications may

examine a new object that is sent to it from an external application to determine how to deal with

it. For example, the recipient application may a query an incoming "grid" object to determine

whether the object contains blanking information, or it may query an incoming "flow data" object
to see which flow variables are included.

Applications may convert data and array objects from one type to another, or provide updated val-

ues for the scalar data or array elements. In this way, an application may convert a newly received

array object from double to single precision. Any subsequent receives of this object are automat-

ically converted into single precision regardless of the type being used by the sending application.

Since objects may contain other objects, a hierarchical object tree may be built by an application,

as shown in figure 3. Once constructed, the object tree may be registered with MDICE, making

the object available for transmission to another application. When an application registers an

object,thestructureof the objecttree(butnot thedataassociatedwith dataor arrayobjects)is
sentto theMDICE GUI.

In thisexample,Domainis ageneralobjectcontainingtwo sub-objects,Grid andFlowData,each
itself ageneralobject.TheGrid objectcontainsthreearrayobjects(x, y, andz coordinatearrays)
andthreedataobjects(i, j, andk, theextentsof thegridsin eachdimension),while theFlowData
objectcontainsfour arrayobjects,onefor metricconversionfactorsandoneeachfor thethree
flow variablesrho (i.e. density),pressure,andtemperature.

Figure 3. A Hypothetical Domain Object

Applications may themselves create and access the low level objects (data, array and general

objects). However, the preferred method of operation is to define a set of higher level objects such

as grid objects, flow data objects, and interface objects and place functions that create, access, and

manipulate these objects into a library. MDICE provides such a high level library (described in

section 4.8); applications may create these high level objects using MDICE-provided convenience

functions without concerning themselves with the low level objects they are composed of. In

either case, the application simply receives a handle to the object for use in subsequent operations.

4.3 Event Handling

Most window-based programs are event driven programs. These include graphics or design pro-

grams that run on UNIX workstations as well as word processors and spreadsheets that run on

personal computers. These event driven programs spend most of their time waiting for the user to

do something interesting, such as pressing a button, choosing an option from a menu, or moving

or clicking the mouse.

Programs integrated into MDICE must become event driven. Subroutines will be called from an

MDICE script rather than from PROGRAM MAIN. Object related events such as create, send,

receive, and destroy must be handled.

Table 1 illustrates certain events and the actions that one might desire, based on the event.

Table 1: Events and Desired Actions

Event

A CFD flow solver

receives a grid object

A program connected to a

structural analysis code

halts unexpectedly

The user transmits inter-

face information between a

CFD code and a structural

analysis code

A new set of residuals is

sent to a line plotter

Desired Action

Compute new cell volumes,

Interpolate old flow data to the new grid

Replace changing boundary condition information

with static (unchanging) data

Interpolate data,

Compute deformations,

Apply these deformations to the respective grids

Add these points to the graph,
Redraw the screen

Setting up an application to handle an event is a four step process. We will illustrate this using the

first example from table 1, namely a CFD flow solver receiving a grid object.

1. Prepare for the event. Typically, the application will want to have some subroutine or

function called when an event takes place. In this case, the program wants to have a sub-

routine called recv_grid executed. This accomplished by adding the subroutine as a

callback. The name of the object, the type of the event, and the desired subroutine are

specified in a special MDICE-provided subroutine call.

2. Wait for the event. Once the application has specified all its callback functions, it trans-

fers control to MDICE using a special MDICE-provided control function. This function

serves as an event loop, monitoring the environment for events (and other commands such

as remote procedure calls, discussed in section 4.4). Once called, this control function
never returns.

3. Handle the event. MDICE calls the recv__grid subroutine on behalf of the applica-
tion.

4. Wait for the next event. No action is required. When the recv_grid subroutine from

step 3 returns, control is automatically returned to the MDICE event loop, and MDICE

continues monitoring the system for future events.

4.4 Remote Procedure Calls

Remote procedure calls are the mechanism by which MDICE invokes subroutines or functions

that are executed by a participating application program. The user of the system writes such a

function call using the MDICE script editor.

In order to carry out the remote procedure call, MDICE evaluates each expression in the func-

tion's argument list and packs the result of the expression into a message buffer. This is called

marshalling the arguments. Next, the message buffer is transmitted to the application, which has

previously called MDICE's special control function and is in its event loop waiting for something

to happen, such as an object related event or (as in this case) an incoming remote procedure call

command. The MDICE library intercepts the incoming message, unpacks the arguments, and

calls the application's function. After the function completes, the return value (in this example, a

boolean value that indicates whether the solution has converged yet) is packed into a new message

buffer and sent back to MDICE. MDICE places the return value of the function into the expres-

sion containing the original function call, and the script resumes.

The internal processing required by MDICE to make these remote procedure calls work is rather

complex. First, MDICE must know about the procedures that the application programs wish to

make available. This requires that a detailed type system be implemented. MDICE must also be

able to call procedures that are internal to an application without knowing apriori what the type

signature of the procedures are. This requires that MDICE call wrapper functions whose type

MDICE does know. These wrapper functions must be linked with the particular application

whose procedure is being invoked. In order to spare the application programmer from writing

them, MDICE provides a stubber that automatically generates these wrappers.

4.5 The MDICE Script

MDICE allows full user control by means of a script. The MDICE script language is easy to learn

yet powerful, making full customization of multi-disciplinary simulations possible.

The language allows all the standard conveniences found in most script languages: local and glo-

bal variables, a rich set of data types including integers, real numbers, strings, objects, and arrays

of these base types, decisions (i.e. if statements), and loops. In addition, the MDICE language

provides for remote procedure calls (discussed in section 4.4), execution of portions of the script

in parallel (discussed in section 4.6), application control in form of run and k-i 11 commands,

and debugging tools such as pr±nt; (which prints a string to the MDICE status window) and

pause (which pauses the script until the continue button is pressed.

Unlike most shell script languages, the MDICE script is a compiled language. It is read in its

entirety, converted into internal data structures (e.g. an abstract syntax tree, control flow graph,

and symbol table are all built by MDICE), and the resulting code is executed. Space for variables

and the results of expressions are allocated before a script is run and freed when it is complete.

The script is strongly typed. Each expression is fully checked for compatibility of its operands

before the script begins running. The return value of each function is also checked, statically if

the function has been posted by the named application before script execution (in which case

MDICE already knows the type of the return value), dynamically if the function is posted during
the run.

4.6 Parallelism

An additional complexity is introduced by the requirement that MDICE be able to call distinct

procedures simultaneously. MDICE solves this problem by implementing the notion of threads.

Sincethreadsarenot implementedonall theplatformsthatwewishto run MDICE on, this is
implementeddirectly insideMDICE. Neitherapplicationprogramsnor users need be aware that

this is taking place. MDICE has a thread class that represents a portion of the script to be exe-

cuted in parallel with other portions. A list of runnable threads is maintained by MDICE. When

one thread blocks (when a remote procedure is being called, for example), the thread is placed on
a list of blocked threads and a new runnable thread is selected. If no more runnable threads

remain, MDICE simply waits for one or more remote procedure calls to complete.

As results (i.e. retum values) from the remote procedure calls are delivered to MDICE, the appro-

priate blocked thread is moved from the "blocked" list to the "mnnable" list. Each remote proce-

dure call is tagged with a reference number to match these incoming return values with the thread

that called the function in the first place. When no more incoming messages are left, one of the

runnable threads is chosen for execution (using a round-robin scheduling algorithm) and the script
resumes.

For example, if several CFD flow solvers are being used to solve a problem, it is necessary that

each perform an iteration over the flow domain concurrently. Each remote procedure to be called

simultaneously is carded out by a separate thread. Of course, the end user need not be aware that

this is taking place. Using a special parallel script command, one can write blocks of code,

each of which is executed simultaneously. Within a given block, each statement is executed in
parallel.

A shorthand notation is available if each block contains a single expression. This shorthand uses

MDICE's semicolon operator. This operator is similar to the comma operator in the C program-

ming language in that each semicolon-separated expression is evaluated; the value of the entire

expression is the value of the rightmost expression. The difference is that each expression (i.e. all

the remote procedure calls) are evaluated simultaneously. The entire expression completes when

all the function calls complete.

4.7 Fortran Interface

The MDICE libraries are written in the C programming language. In order to call the functions

from a Fortran program, a complete Fortran interface is provided. This interface allows all the

common Fortran data types, including integers, single and double precision reals, character

strings, and arrays to be passed into the library functions.

4.8 MDICE Libraries

MDICE provides four libraries of functions that application programs may be linked with when

they are integrated into the computing environment. These are

1. A low level MDICE library. This library implements low level objects (data, array, and

general objects), communication (sending and receiving messages between applications or

between applications and MDICE), and control (event handling and remote procedure

calls).

2. An object library containing a rich set of pre-defined objects. These objects include

9

• Arrays
• BoundaryConditions
• Grids
• FlowData
• Domains
• Interfaces
• PlottingData

StructuredandUnstructured
Structured,Unstructured,andPolyhedral
StructuredandUnstructured
A Combinationof GridsandFlow Data
Fluid-Fluid andFluid-Structure
Line DataandPointData

3. An interpolationlibrary thatprovidesinterpolationof flow field databetweendifferent
CFD flow solversor betweenaCFDflow solverandastructuralanalysiscode.

4. A memoryallocationlibrary thatcanbeusedto dynamicallycheckthecorrectnessof the
application'suseof dynamicallyallocatedmemory.

4.9 MDICE Compliant Applications

There are several applications which are already MDICE compliant. These include most of the

CFDRC proprietary codes such as:

• CFD-VIEW

• CFD-GEOM

• CFD-ACE

• CFD-FASTRAN

• CFD-FEMSTRESS

Post Processing, Visualization, and Animation

Geometry Modeling and Grid Generation

Multi-Purpose CFD Flow Solver

External Aerodynamics Flow Solver

Structural Analysis

In addition, the following codes (some of them public domain) have been integrated into MDICE:

• ADPAC

• NPARC

• GCNS

• WIND

• Cobalt

• Corsair

• Xmgr

• ImageMagic

NASA Lewis tttrbomachineryflow solver
NPARC Alliance Inlet/Duct/Nozzle flow solver

Northrop-Grumman flow solver

Previously NASTD, a Boeing flow solver

AFRL/VAAC (WL) flow solver

Pratt & Whitney and NASA LeRC Combustion flow solver

Two dimensional graphing package

Used for capturing screen dumps

5 Current Status and Future Work

The MDICE system is fully functional and is currently being used heavily by CFDRC for several

large projects. These include the Numerical Propulsion System Simulation (NPSS), the Multi-

disciplinary Aero-Structural Environment, the Generic Remeshing Environment, and simulation

of Magnetic Resonance Imaging. An application of this environment for fluid-structure interac-

tion is given in the companion paper [2]

Researchers at the NASA Lewis Research Center are using MDICE to couple different types of

CFD flow solvers to perform a coupled inlet-engine analysis [3] and to couple codes in the

National Combustion Code project [4]. Pratt & Whitney is using the environment for turbo-

10

machineryanalysis[5], andAlliedSignalEnginesis usingtheenvironmentfor several
engineanalyses[6]. Engineersat AFRL (WL) areusingtheenvironmentto coupleCFD
andstructuralanalysiscodesfor aeroelasticityproblems.At leastfour industrypartners
arecurrentlyintegratingtheirproprietarycodesintoMDICE. ThesearePratt& Whitney,
AlliedSignal,NorthropGrumman,andBoeing.

Futurework includesprovidingapoint-and-clickscriptbuilder,including fault tolerance libraries

enabling MDICE compliant applications to checkpoint themselves, and adding more application
programs to the environment.

6 Conclusion

We have integrated VCE, a joint CFDRC / NASA LeRC project, and extensions developed by

CFDRC and AFRL (WL) into MDICE, a multi-disciplinary computing environment, for running

simulations that involve many dissimilar yet interoperating application programs. A central pro-

gram allows the engineer using the system to fully control and steer the simulation. A rich and

robust collection of libraries allow application programs to be integrated into the system by

becoming MDICE compliant. Once done, each such application is able to communicate with all

other MDICE compliant applications.

We provide several tools to aid the application programmer in this task. These include a reference

manual, a user's guide, and a code generator that lifts much of the burden from the programmer.

In addition, a complete Fortran interface allows large legacy codes to be integrated using only

native Fortran programming constructs.

A significant number of engineering analysis codes from a variety of disciplines such as grid gen-

eration, CFD, structural analysis, visualization, etc., have been integrated into the environment by

several organizations. Integration of more codes and an extension to more disciplines is planned
for the near future.

7 Acknowledgments

The authors would like to gratefully acknowledge the support of the NASA High Performance

Computing And Communication Program. We also acknowledge Scott Townsend and Ambady

Suresh and the NASA Lewis Research Center, whose support and assistance has been consider-
able.

The authors would also like to acknowledge the work being done by Steve Connolly at Pratt &

Whitney and by Wolfgang Sandel at AlliedSignal. Their feedback has contributed a great deal to

the success of the project.

General Support and guidance of several others have also been very useful, including: Russ

Clauss of NASA LeRC, Ken Moran, Don Kinsey, and Larry Huttsell of WL, and Andrzej Przek-

was and Ashok Singhal of CFDRC.

11

[1]

[2]

[3]

[4]

[5]

[6]

References

Gerry Kingsley, Vincent Harrand, and Charles Lawrence, "A Visual Computing Environ-

ment for Computational Aerosciences", Proceedings of the 1996 Computational Aero-

sciences Workshop, NASA Ames Research Center, August, 1996, pp. 313-318.

John M. Siegel, Jr., Gerry Kingsley, Paul J. Dionne, Joel J. Luker, and Vincent J. Harrand,

"Application of a Multi-Disciplinary Computing Environment (MDICE) for Loosely Cou-

pled Fluid-Structural Analysis", Proceedings of the 7th AIAA/USAF/NASA/ISSMO

Symposium on Multidisciplinary Analysis & Optimization.

Gary Cole, "VCE Applications at NASA Lewis: Inlet-Engine Simulation", Proceedings of

the First VCE Workshop, NASA Lewis Research Center, November, 1997.

Nan-Suey Liu, "VCE Application to National Combustion Code", Proceedings of the First

VCE Workshop, November, 1996, NASA Lewis Research Center

David Edwards, 'VCE Applications at Pratt & Whitney", Proceedings of the First VCE

Workshop, NASA Lewis Research Center, November, 1997.

Wolfgang Sandel, "VCE Applications at AlliedSignal Engines", Proceedings of the First

VCE Workshop, NASA Lewis Research Center, November, 1997.

12

